You can take the same source code package that Ubuntu uses to build jq, compile it again, and realize 90% better performance.
I use jq
for processing GeoJSON files and other open data offered in JSON format. Today I am working with a 500MB GeoJSON file that contains the Alameda County Assessor's parcel map. I want to run a query that prints the city for every parcel worth more than a threshold amount. The program is
.features[] | select(.properties.TotalNetValue < 193000) | .properties.SitusCity
This takes about 5 seconds with the file cached, on a Ryzen 9 9950X system. That seems a bit shabby and I am sure we can do better.
What happens if you grab the jq source code from Launchpad, then configure and rebuild it with no flags at all? Even that is about 2-4% faster than the Ubuntu binary package.
We are using hyperfine to get repeatable results. The jq
program is being constrained on logical CPU 2, to keep it away from system interrupts that run on CPU 0 and to ensure no CPU migrations.
% hyperfine --warmup 1 --runs 3 -L binary ~/jq-jq-1.7.1/jq,/usr/bin/jq "taskset -c 2 {binary} -rf /tmp/select.jq /tmp/parcels.geojson"
Benchmark 1: taskset -c 2 /home/jwb/jq-jq-1.7.1/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.517 s ± 0.017 s [User: 3.907 s, System: 0.610 s]
Range (min … max): 4.497 s … 4.531 s 3 runs
Benchmark 2: taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.641 s ± 0.038 s [User: 4.013 s, System: 0.628 s]
Range (min … max): 4.601 s … 4.675 s 3 runs
Summary
taskset -c 2 /home/jwb/jq-jq-1.7.1/jq -rf /tmp/select.jq /tmp/parcels.geojson ran
1.03 ± 0.01 times faster than taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Next, let's rebuild the program with my favorite compiler, a higher optimization level, LTO, and some flags that I typically want to help with debugging and profiling. Some of them are irrelevant to this case, but I use the same flags for most builds. The flags that seem to make a performance difference are:
- -O3 vs -O2
- -flto
- -DNDEBUG
The last of those saves a lot of cost in assertions that showed up strongly in the profiles.
% CC=clang-18 LDFLAGS="-flto -g -Wl,--emit-relocs -Wl,-z,now -Wl,--gc-sections -fuse-ld=lld" CFLAGS="-flto -DNDEBUG -fno-omit-frame-pointer -gmlt -march=native -O3 -mno-omit-leaf-frame-pointer -ffunction-sections -fdata-sections" ./configure
Benchmark 1: taskset -c 2 /home/jwb/jq-jq-1.7.1/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 3.853 s ± 0.033 s [User: 3.245 s, System: 0.608 s]
Range (min … max): 3.822 s … 3.887 s 3 runs
Benchmark 2: taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.631 s ± 0.047 s [User: 4.012 s, System: 0.619 s]
Range (min … max): 4.602 s … 4.686 s 3 runs
Summary
taskset -c 2 /home/jwb/jq-jq-1.7.1/jq -rf /tmp/select.jq /tmp/parcels.geojson ran
1.20 ± 0.02 times faster than taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Now we are 20% faster than upstream with almost no effort.
Jq is a complex C program, and C programs of any complexity tend to rely on malloc and free, because the language offers no other cognizable way to deal with memory. Allocation is the top line in the profile by far. What if we use a better allocator, instead of the one that comes in GNU libc? Ubuntu offers a package of TCMalloc, which is actually rather obsolete and not the current TCMalloc effort, but it's an allocator package in their repo, so let's give it a whirl.
Having added -L/usr/lib/x86_64-linux-gnu -ltcmalloc_minimal
to the LDFLAGS and rebuilt ...
Benchmark 1: taskset -c 2 /home/jwb/jq-jq-1.7.1/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 3.253 s ± 0.009 s [User: 2.625 s, System: 0.628 s]
Range (min … max): 3.245 s … 3.262 s 3 runs
Benchmark 2: taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.611 s ± 0.026 s [User: 4.015 s, System: 0.596 s]
Range (min … max): 4.591 s … 4.640 s 3 runs
Summary
taskset -c 2 /home/jwb/jq-jq-1.7.1/jq -rf /tmp/select.jq /tmp/parcels.geojson ran
1.42 ± 0.01 times faster than taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
This is not bad. We are now > 40% faster than the package upstream tried to foist on us.
If the allocator is the issue, it stands to reason that we can get some of that benefit just by hiding the libc allocator using a dynamic preload with the stock Ubuntu binary.
Benchmark 1: LD_PRELOAD= taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.601 s ± 0.027 s [User: 3.966 s, System: 0.634 s]
Range (min … max): 4.577 s … 4.630 s 3 runs
Benchmark 2: LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.082 s ± 0.010 s [User: 3.476 s, System: 0.606 s]
Range (min … max): 4.071 s … 4.091 s 3 runs
Summary
LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson ran
1.13 ± 0.01 times faster than LD_PRELOAD= taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
This by itself is good for 13%. Not bad.
Ubuntu also ships packages of jemalloc and mimalloc. We can try them all. It turns out that mimalloc beats all others.
Note: results obtained after setting MIMALLOC_LARGE_OS_PAGES=1
, MALLOC_CONF="thp:always,metadata_thp:always"
, and GLIBC_TUNABLES=glibc.malloc.hugetlb=1
in the environment.
Benchmark 1: LD_PRELOAD= taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.123 s ± 0.040 s [User: 3.862 s, System: 0.261 s]
Range (min … max): 4.084 s … 4.165 s 3 runs
Benchmark 2: LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.130 s ± 0.017 s [User: 3.505 s, System: 0.624 s]
Range (min … max): 4.118 s … 4.149 s 3 runs
Benchmark 3: LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 3.510 s ± 0.079 s [User: 3.223 s, System: 0.286 s]
Range (min … max): 3.452 s … 3.599 s 3 runs
Benchmark 4: LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libmimalloc.so taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 3.154 s ± 0.010 s [User: 2.889 s, System: 0.265 s]
Range (min … max): 3.145 s … 3.164 s 3 runs
Summary
LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libmimalloc.so taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson ran
1.11 ± 0.03 times faster than LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
1.31 ± 0.01 times faster than LD_PRELOAD= taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
1.31 ± 0.01 times faster than LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Enabling THP benefits the glibc allocator, jemalloc, and mimalloc. The speedup of THP+mimalloc is 31% over THP+glibc and 48% over glibc defaults.
Its cool that mimalloc is fast in this case, but dynamic preloads aren't amazing for performance. Let's rebuild the program with mimalloc.
Benchmark 1: taskset -c 2 /home/jwb/jq-jq-1.7.1/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 2.428 s ± 0.019 s [User: 2.161 s, System: 0.267 s]
Range (min … max): 2.404 s … 2.464 s 10 runs
Benchmark 2: taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Time (mean ± σ): 4.606 s ± 0.039 s [User: 3.979 s, System: 0.627 s]
Range (min … max): 4.522 s … 4.640 s 10 runs
Summary
taskset -c 2 /home/jwb/jq-jq-1.7.1/jq -rf /tmp/select.jq /tmp/parcels.geojson ran
1.90 ± 0.02 times faster than taskset -c 2 /usr/bin/jq -rf /tmp/select.jq /tmp/parcels.geojson
Jq rebuilt from source with a a better allocator is 1.9x, nearly twice as fast as the Ubuntu binary package for this workload. In another application, processing 2.2GB of JSON in 13000 files (using rush to parallelize) this build of jq does the job in 0.755s vs 1.424s for the Ubuntu package. That is a speedup of nearly 2x again. These are very satisfactory results.
Sick. I just learned more about compiling in the last 4 minutes than my entire life before that.